PearceMlp
CLASS cleandiffuser.nn_diffusion.PearceMlp(act_dim: int, To: int = 1, emb_dim: int = 128, hidden_dim: int = 512, timestep_emb_type: str = “positional”, timestep_emb_params: Optional[dict] = None) [SOURCE]
A carefully designed MLP neural network backbone for diffusion models. It is proposed in Diffusion Behavior Clone (DBC). It assumes the input tensor \(\bm x_t\) is the action tensor and the context tensor \(\bm c\) is the observation sequence tensor (contains the current observation and the previous observations).
Parameters:
- act_dim (int): The dimension of the action tensor \(\bm x_t\).
- To (int): The number of observations to consider. 1 means only the current observation. Default is 1.
- emb_dim (int): The dimension of the time embedding. Default is 128.
- hidden_dim (int): The dimension of the hidden layers of the MLP. Default is 512.
- timestep_emb_type (str): The type of the time embedding. It can be either “positional” or “fourier”. Default is “positional”.
- timestep_emb_params (Optional[dict]): The parameters for the time embedding. Default is None.
forward(x: torch.Tensor, t: torch.Tensor, c: torch.Tensor) -> torch.Tensor
Parameters:
- x (torch.Tensor): The input tensor \(\bm x_t\) in shape
(..., act_dim)
- t (torch.Tensor): The time tensor \(t\) in shape
(..., 1)
. - c (torch.Tensor): The context tensor \(\bm c\) in shape
(..., To, obs_dim)
or(..., obs_dim)
.
Returns:
- torch.Tensor: The output tensor in shape
(..., act_dim)
.